Indian Standard

ORDINARY PORTLAND CEMENT, 43 GRADE — SPECIFICATION

(Second Revision)

ICS 91.100.10
FOREWORD

This Indian Standard (Second Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Cement and Concrete Sectional Committee had been approved by the Civil Engineering Division Council. This standard was first published in 1976 under the title, ‘Specification for high strength ordinary Portland cement’ and subsequently revised in 1989 and rechristened as ‘Specification for 43 grade ordinary Portland cement’. This revision incorporates the experience gained with the use of this specification and brings the standard in line with the latest developments in this field.

Since the first revision of this standard, a large number of amendments were issued from time-to-time in order to modify various requirements based on experience gained with the use of the standard and the requirements of the users, and also keeping in view the raw materials available in the country and found suitable for the manufacture of cement. The important amendments included: use of performance improvers for addition during clinker grinding stage, incorporation of requirement of chloride content for the cement used in structures other than prestressed concrete, permitting use of 25 kg, 10 kg, 5 kg, 2 kg and 1 kg bags for packing of cement, and requirement of packing cement for export. In view of the large number of amendments, the Sectional Committee decided to bring out this second revision of the standard incorporating all these amendments so as to make it more convenient for the users. Further, following are the other significant modifications incorporated in this revision:

a) Requirement for insoluble residue has been specified as 5.0 percent, maximum irrespective of addition of performance improver(s) or otherwise.

b) An upper limit of compressive strength at 28 days, equal to the minimum requirement plus 15 MPa, has been incorporated.

c) SO$_3$ content requirement has been revised to 3.5 percent maximum irrespective of C$_3$A content, primarily to accommodate use of coal/pet coke as fuel which may have higher sulphur content; subject to the cement conforming to all the requirements of the standard.

d) A clause has been introduced requiring manufacturer to furnish a certificate indicating alkali content if required by the purchaser.

e) Requirement of marking of type and amount of performance improver(s) on the bag has been incorporated.

f) Requirement of testing the cement samples at the earliest but not later than 3 months since the receipt of samples for testing, has been included.

With the increase in SO$_3$ content limit in this revision, suitable caution needs to be exercised for limiting the sulphates in concrete in accordance with the provision of IS 456 : 2000 ‘Code of practice for plain and reinforced concrete (fourth revision)’.

Quantity of cement packed in bags and the tolerance requirements for the quantity of cement packed in bags shall be in accordance with the relevant provisions of the Standards of Weights and Measures (Packaged Commodities) Rules, 1977 and B-1.2 (see Annex B). Any modification in these rules in respect of tolerance on quantity of cement would apply automatically to this standard.

This standard contains Sl No. (viii) of Table 2 and 12.2.1 which give option to the purchaser and Sl No. (v) of Table 3 and 9.2, 9.3, 9.4 and 9.4.3, which call for agreement between the purchaser and the supplier.

Specific requirements of ordinary Portland cement for manufacture of railway sleepers, designated as 43-S grade cement, are given in 5.2, Table 3 and 10.1. To differentiate it with normal grade, ‘43-S grade’ shall be marked on the bags/packets for such cement in place of ‘43 grade’.

The composition of the technical Committee responsible for the formulation of this standard is given in Annex C. For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2 : 1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Indian Standard
ORDINARY PORTLAND CEMENT, 43 GRADE — SPECIFICATION
(Second Revision)

1 SCOPE
This standard covers the manufacture and chemical and physical requirements of 43 grade ordinary Portland cement.

2 REFERENCES
The standards given in Annex A contain provisions which, through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated in Annex A.

3 TERMINOLOGY
For the purpose of this standard, the definitions given in IS 4845 shall apply.

4 MANUFACTURE
4.1 Ordinary Portland cement, 43 grade shall be manufactured by intimately mixing together calcareous and argillaceous and/or other silica, alumina or iron oxide bearing materials, burning them at a clinkering temperature and grinding the resultant clinker so as to produce a cement capable of complying with this standard. No material shall be added after burning, other than gypsum (natural mineral or chemical, see Note), water, performance improver(s), and not more than a total of 1.0 percent of air-entraining agents or other agents including colouring agents, which have proved not to be harmful.

NOTE — Chemical gypsum shall be added provided that the performance requirements of the final product as specified in this standard are met with.

4.1.1 Limit of addition of performance improver shall be as given in Table 1 and shall be inclusive of 1 percent additives as mentioned above.

If a combination of above performance improvers is added, the maximum limit of total addition shall be 5 percent.

5 CHEMICAL REQUIREMENTS
5.1 When tested in accordance with the methods given in IS 4032, ordinary Portland cement, 43 grade shall comply with the chemical requirements given in Table 2.

Table 1 Performance Improvers
(Clause 4.1.1)

<table>
<thead>
<tr>
<th>SI No.</th>
<th>Performance Improver</th>
<th>Percentage Addition by Mass, Max</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>Fly ash</td>
<td>5</td>
<td>Conforming to IS 3812 (Part 1)</td>
</tr>
<tr>
<td>ii)</td>
<td>Granulated slag</td>
<td>5</td>
<td>Conforming to IS 12089</td>
</tr>
<tr>
<td>iii)</td>
<td>Silica fume</td>
<td>5</td>
<td>Conforming to IS 15388</td>
</tr>
<tr>
<td>iv)</td>
<td>Limestone</td>
<td>5</td>
<td>CaCO₂ content calculated from CaO content shall not be less than 75 percent when tested in accordance with IS 1760 (Part 3)</td>
</tr>
<tr>
<td>v)</td>
<td>Rice husk ash</td>
<td>5</td>
<td>a) Reactive silica shall not be less than 80 percent when tested as per IS 3812 (Part 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b) Pozzolanic activity index shall not be less than 90 percent when tested as per 10 of IS 1727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c) Loss on ignition shall not be more than 5.0 percent when tested as per IS 1727</td>
</tr>
<tr>
<td>vi)</td>
<td>Metakaolin</td>
<td>5</td>
<td>a) Silicon dioxide (SiO₂) plus aluminium oxide (Al₂O₃) in percent by mass shall not be less than 94.0 percent when tested as per IS 1727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b) Loss on ignition shall not be more than 2.0 percent when tested as per IS 1727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c) Total alkalis as sodium oxide (as Na₂O equivalent) in percent by mass shall not be more than 1.5 percent when tested as per IS 4032</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d) Particles retained on 45 micron IS sieve (wet sieving) shall not be more than 1.5 percent when tested as per IS 1727</td>
</tr>
</tbody>
</table>
Table 2 Chemical Requirements for Ordinary Portland Cement, 43 Grade

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Characteristic</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>i)</td>
<td>Ratio of percentage of lime to percentages of silica, alumina and iron oxide, when calculated by the formula:</td>
<td>0.66-1.02</td>
</tr>
</tbody>
</table>
| | \[
| | CaO × 0.7 SO\textsubscript{3} + \frac{2.8 SiO\textsubscript{2} + 1.2 Al\textsubscript{2}O\textsubscript{3} + 0.65 Fe\textsubscript{2}O\textsubscript{3}}{1.3} = \text{Ratio} | |
| ii) | Ratio of percentage of alumina to that of iron oxide, Min | 0.66 |
| iii) | Insoluble residue, percent by mass, Max | 4.0 |
| iv) | Magnesia, percent by mass, Max | 6.0 |
| v) | Total sulphur content calculated as sulphuric anhydride (SO\textsubscript{3}), percent by mass, Max | 3.5 |
| vi) | Loss on ignition, percent by mass, Max | 5.0 |
| vii) | Chloride content, percent by mass, Max | 0.1 |
| viii) | Alkali content | 0.05 (for prestressed structures) See Note |

NOTE — Alkali aggregates reactions have been noticed in aggregates in some parts of the country. On large and important jobs where the concrete is likely to be exposed to humid atmosphere or wetting action, it is advisable that the aggregate be tested for alkali aggregate reaction. In the case of reactive aggregates, the use of cement with alkali content below 0.6 percent expressed as sodium oxide (Na\textsubscript{2}O), is recommended. Where, however, such cements are not available, use of alternative means may be resorted to for which a reference may be made to 8.2.5.4 of IS 456. If so desired by the purchaser, the manufacturer shall carry out test for alkali content.

5.2 Cement used for railway sleepers shall additionally satisfy the following chemical/mineralogical requirements and shall be designated as 43-S grade:

a) Magnesia, percent by mass, Max 5.0
b) Tricalcium aluminate content, percent by mass, Max 10.0
c) Tricalcium silicate, percent by mass, Min 45.0

NOTE — The tricalcium aluminate content (C\textsubscript{3}A) and tricalcium silicate content (C\textsubscript{3}S) are calculated by the formula:

\[
C_{3A} = 2.65 (Al_2O_3) - 1.69 (Fe_2O_3) \\
C_{3S} = 4.07 (CaO) - 7.60 (SiO_2) - 6.72 (Al_2O_3) - 1.43 (Fe_2O_3) - 2.85 (SO_3)
\]

where each symbol in brackets refers to the percent (by mass of total cement) of the oxide, excluding any contained in insoluble residue referred to at SI No. (iii) of Table 2.

6 PHYSICAL REQUIREMENTS

Ordinary Portland cement, 43 grade shall comply with the physical requirements given in Table 3.

7 STORAGE

The cement shall be stored in such a manner as to permit easy access for proper inspection and identification, and in a suitable weather-tight building to protect the cement from dampness and to minimize warehouse deterioration (see also IS 4082).

8 MANUFACTURER’S CERTIFICATE

8.1 The manufacturer shall satisfy himself that the cement conforms to the requirements of this standard and, if requested, shall furnish a test certificate to this effect to the purchaser or his representative, within ten days of testing of the cement (except for 28 days compressive strength test results, which shall be furnished after completion of the test). The type and percentage addition of performance improver(s) shall also be indicated in the certificate.

8.2 The manufacturer shall furnish a certificate indicating the alkali content, if requested.

9 PACKING

9.1 The cement shall be packed in any of the following bags:

a) jute sacking bag conforming to IS 2580;
b) multi-wall paper sacks conforming to IS 11761;
c) light weight jute conforming to IS 12154;
d) HDPE/PP woven sacks conforming to IS 11652;
e) jute synthetic union bags conforming to IS 12174; or
f) any other approved composite bag.

Bags shall be in good condition at the time of inspection.

9.1.1 The net quantity of cement per bag shall be 50 kg subject to provisions and tolerances given in Annex B.

9.2 The net quantity of cement per bag may also be 25 kg, 10 kg, 5 kg, 2 kg or 1 kg subject to tolerances...
Table 3 Physical Requirements for Ordinary Portland Cement, 43 Grade

(From Word and Clause 6)

<table>
<thead>
<tr>
<th>Sl No. (1)</th>
<th>Characteristic Requirement</th>
<th>Requirement</th>
<th>Method of Test, Ref to</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Fineness, m<sup>2</sup>/kg, Min</td>
<td>225</td>
<td>IS 4031 (Part 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>370 for 43-S grade</td>
<td>IS 4031 (Part 2)</td>
<td></td>
</tr>
<tr>
<td>ii) Soundness:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) By Le Chatelier method, mm, Max</td>
<td>10</td>
<td>IS 4031 (Part 3)</td>
<td></td>
</tr>
<tr>
<td>b) By autoclave test method, percent, Max</td>
<td>0.8</td>
<td>IS 4031 (Part 3)</td>
<td></td>
</tr>
<tr>
<td>iii) Setting time:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Initial, min, Min</td>
<td>30</td>
<td>IS 4031 (Part 5)</td>
<td></td>
</tr>
<tr>
<td>b) Final, min, Max</td>
<td>60 for 43-S grade</td>
<td>IS 4031 (Part 5)</td>
<td></td>
</tr>
<tr>
<td>iv) Compressive strength, MPa (see Note 4):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) 72 ± 1 h, Min</td>
<td>23</td>
<td>IS 4031 (Part 6)</td>
<td></td>
</tr>
<tr>
<td>b) 168 ± 2 h, Min</td>
<td>33</td>
<td>IS 4031 (Part 6)</td>
<td></td>
</tr>
<tr>
<td>c) 672 ± 4 h, Min</td>
<td>37.5 for 43-S grade</td>
<td>IS 4031 (Part 6)</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>43</td>
<td>IS 4031 (Part 6)</td>
<td></td>
</tr>
<tr>
<td>v) Transverse strength (optional)</td>
<td>See Notes 3 and 4</td>
<td>IS 4031 (Part 8)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. In the event of cements failing to comply with any one or both the requirements of soundness specified in this table, further tests in respect of each failure shall be made as described in IS 4031 (Part 3), from another portion of the same sample after aeration. The aeration shall be done by spreading out the sample to a depth of 75 mm at a relative humidity of 50 to 80 percent for a total period of 7 days. The expansion of cements so aerated shall be not more than 5 mm and 0.6 percent when tested by Le Chatelier method and autoclave test respectively. For 43-S grade cement, the requirement of soundness of unaerated cement shall be maximum expansion of 5 mm when tested by the Le Chatelier method.

2. If cement exhibits false set, the ratio of final penetration measured after 5 min of completion of mixing period to the initial penetration measured exactly after 20 s of completion of mixing period, expressed as percent, shall be not less than 50. In the event of cement exhibiting false set, the initial and final setting time of cement when tested by the method described in IS 4031 (Part 5) after breaking the false set, shall conform to the value given in this table.

3. By agreement between the purchaser and the manufacturer, transverse strength test of plastic mortar in accordance with the method described in IS 4031 (Part 8) may be specified. The permissible values of the transverse strength shall be mutually agreed to between the purchaser and the supplier at the time of placing the order.

4. Notwithstanding the compressive and transverse strength requirements specified as per this table, the cement shall show a progressive increase in strength from the strength at 72 h.

as given in 9.2.1 and packed in suitable bags as agreed to between the purchaser and the manufacturer.

9.2.1 The number of bags in a sample taken for weighment showing a minus error greater than 2 percent of the specified net quantity shall be not more than 5 percent of the bags in the sample. Also the minus error in none of such bags in the sample shall exceed 4 percent of the specified net quantity of cement in the bag. However, the average of net quantity of cement in a sample shall be equal to or more than 25 kg, 10 kg, 5 kg, 2 kg or 1 kg, as the case may be.

9.3 Supplies of cement in bulk may be made by arrangement between the purchaser and the supplier (manufacturer or stockist).

NOTE — A single bag or container containing 1 000 kg and more, net quantity of cement shall be considered as the bulk supply of cement. Supplies of cement may also be made in intermediate bags/containers, for example, drums of 200 kg, by agreement between the purchaser and the manufacturer.

9.4 When cement is intended for export and if the purchaser so requires, packing of cement may be done in bags or in drums with net quantity of cement per bag or drum as agreed to between the purchaser and the manufacturer.

9.4.1 For this purpose, the permission of the certifying authority shall be obtained in advance for each export order.

9.4.2 The words ‘FOR EXPORT’ and the net quantity of cement per bag/drum shall be clearly marked in indelible ink on each bag/drum.

9.4.3 The packing material shall be as agreed to between the manufacturer and the purchaser.

9.4.4 The tolerance requirements for the quantity of cement packed in bags/drum shall be as given in 9.2.1 except the net quantity which shall be equal to or more than the quantity in 9.4.

10 MARKING

10.1 Each bag of cement shall be legibly and indelibly marked with the following:

a) Manufacturer’s name and his registered trademark;
b) The words ‘Ordinary Portland Cement, 43 Grade’ or ‘Ordinary Portland Cement, 43-S Grade’, whichever is applicable;
c) Net quantity, in kg;
d) The words ‘Use no Hooks’;
e) Batch/control unit number in terms of week, month and year of packing;
f) Address of the manufacturer; and
g) Type and percentage of performance improver(s) added, in case of addition of performance improvers.

10.2 Similar information shall be provided in the delivery advices accompanying the shipment of packed or bulk cement and on cement drums (see 9.3).

10.3 BIS Certification Marking
The cement may also be marked with the Standard Mark.

10.3.1 The use of the Standard Mark is governed by the provisions of the Bureau of Indian Standards Act, 1986 and the Rules and Regulations made thereunder. The details of conditions under which a license for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.

11 SAMPLING
11.1 A sample or samples for testing may be taken by the purchaser or his representative, or by any person appointed to superintend the work for the purpose of which the cement is required or by the latter’s representative.

11.1.1 The samples shall be taken within three weeks of the delivery and all the tests shall be commenced within one week of sampling.

11.1.2 When it is not possible to test the samples within one week, the samples shall be packed and stored in air-tight containers and tested at the earliest but not later than 3 months since the receipt of samples for testing.

11.2 In addition to the requirements of 11.1, the methods and procedure of sampling shall be in accordance with IS 3535.

11.3 The manufacturer or the supplier shall afford every facility, and shall provide all labour and materials for taking and packing the samples for testing the cement and for subsequent identification of cement sampled.

12 TESTS
12.1 The sample or samples of cement for test shall be taken as described in 11 and shall be tested in the manner described in the relevant clauses.

12.2 Independent Testing
12.2.1 If the purchaser or his representative requires independent tests, the samples shall be taken before or immediately after delivery at the option of the purchaser or his representative, and the tests shall be carried out in accordance with this standard on the written instructions of the purchaser or his representative.

12.2.2 The manufacturer/supplier shall supply, free of charge, the cement required for testing. Unless otherwise specified in the enquiry and order, the cost of the tests shall be borne as follows:
 a) By the manufacturer/supplier, if the results show that the cement does not comply with the requirements of this standard, and
 b) By the purchaser, if the results show that the cement complies with the requirement of this standard.

12.2.3 After a representative sample has been drawn, tests on the sample shall be carried out as expeditiously as possible (see 11.1.1 and 11.1.2).

13 REJECTION
13.1 Cement may be rejected if it does not comply with any of the requirements of this standard.

13.2 Cement remaining in bulk storage at the factory, prior to shipment, for more than six months, or cement in bags, in local storage such as, in the hands of a vendor for more than 3 months after completion of tests, shall be retested before use and shall be rejected if it fails to conform to any of the requirements of this standard.
ANNEX A

 LIST OF REFERRED INDIAN STANDARDS

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>456</td>
<td>Code of practice plain and reinforced concrete (fourth revision)</td>
<td>(Part 6)</td>
<td>Determination of compressive strength of hydraulic cement (other than masonry cement) (first revision)</td>
</tr>
<tr>
<td>650</td>
<td>Specification for standard sand for testing of cement (second revision)</td>
<td>(Part 8)</td>
<td>Determination of transverse and compressive strength of plastic mortar using prism (first revision)</td>
</tr>
<tr>
<td>1727</td>
<td>Methods of test for pozzolanic materials (first revision)</td>
<td>4032</td>
<td>Methods of chemical analysis of hydraulic cement (first revision)</td>
</tr>
<tr>
<td>1760</td>
<td>Methods of chemical analysis of limestone, dolomite and allied materials: Part 3</td>
<td>4082</td>
<td>Recommendations on stacking and storage of construction materials and components at site (second revision)</td>
</tr>
<tr>
<td></td>
<td>Determination of iron oxide, alumina, calcium oxide and magnesia (first revision)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2580</td>
<td>Textiles — Jute sacking bags for packing cement — Specification (third revision)</td>
<td>4845</td>
<td>Definitions and terminology relating to hydraulic cement</td>
</tr>
<tr>
<td>3535</td>
<td>Methods of sampling hydraulic cements (first revision)</td>
<td>4905</td>
<td>Methods for random sampling</td>
</tr>
<tr>
<td>3812</td>
<td>Specification for pulverized fuel ash: Part 1 For use as Pozzolana in cement, cement</td>
<td>11652</td>
<td>Specification for high density polyethylene (HDPE)/polypropylene (PP) woven sacks for packing cement (second revision)</td>
</tr>
<tr>
<td></td>
<td>mortar and concrete (third revision)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4031</td>
<td>Methods of physical tests for hydraulic cement (second revision)</td>
<td>11761</td>
<td>Specification for multi-wall paper sacks for cement (first revision)</td>
</tr>
<tr>
<td></td>
<td>Determination of fineness by specific surface by Blaine air permeability method (second</td>
<td>12089</td>
<td>Specification for granulated slag for manufacture of Portland slag cement</td>
</tr>
<tr>
<td></td>
<td>revision)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determination of soundness (first revision)</td>
<td>12154</td>
<td>Light weight jute bags for packing cement</td>
</tr>
<tr>
<td></td>
<td>Determination of initial and final setting times (first revision)</td>
<td>12174</td>
<td>Jute synthetic union bags for packing cement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15388</td>
<td>Specification for silica fume</td>
</tr>
</tbody>
</table>

ANNEX B

 TOLERANCE REQUIREMENTS FOR THE QUANTITY OF CEMENT PACKED IN BAGS

B-1 The average of the net quantity of cement packed in bags at the plant in a sample shall be equal to or more than 50 kg. The number of bags in a sample shall be as given below:

<table>
<thead>
<tr>
<th>Batch Size</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-150</td>
<td>20</td>
</tr>
<tr>
<td>151-280</td>
<td>32</td>
</tr>
<tr>
<td>281-500</td>
<td>50</td>
</tr>
<tr>
<td>501-1,200</td>
<td>80</td>
</tr>
<tr>
<td>1,201-3,200</td>
<td>125</td>
</tr>
<tr>
<td>3,201 and over</td>
<td>200</td>
</tr>
</tbody>
</table>

The bags in a sample shall be selected at random. For methods of random sampling, IS 4905 may be referred to.

B-1.1 The number of bags in a sample showing a minus error greater than 2 percent of the specified net quantity (50 kg) shall be not more than 5 percent of the bags in the sample. Also the minus error in none of such bags in a sample shall exceed 4 percent of the specified net quantity of cement in the bag.

NOTE — The matter given in B-1 and B-1.1 are extracts based on the Standards of Weights and Measures (Packaged
NOTE — The mass of a jute sack to hold 50 kg of cement is 531 g, the mass of a 6-ply paper bag to hold 50 kg of cement is approximately 400 g, the mass of a HDPE/PP woven sack to hold 50 kg of cement is approximately 70 g/71 g respectively, and the mass of a jute synthetic union bag to hold 50 kg of cement is approximately 420 g.

ANNEX C

(Foreword)

COMMITTEE COMPOSITION

Cement and Concrete Sectional Committee, CED 2

<table>
<thead>
<tr>
<th>Organization</th>
<th>Representative(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delhi Tourism and Transportation Development Corporation Ltd, New Delhi</td>
<td>Shri J. Kuriyan (Chairman)</td>
</tr>
<tr>
<td>ACC Ltd, Mumbai</td>
<td>Shri S. A. Khadilkar</td>
</tr>
<tr>
<td>Ambuja Cements Limited, Mumbai</td>
<td>Shri Sharad Kumar Shrivastava (Alternate)</td>
</tr>
<tr>
<td>Association of Consulting Civil Engineers (India), Bangalore</td>
<td>Shri C. M. Dordi</td>
</tr>
<tr>
<td>Atomic Energy Regulatory Board, Mumbai</td>
<td>Dr A. N. Vyasa Rao (Alternate)</td>
</tr>
<tr>
<td>Builders’ Association of India, Mumbai</td>
<td>Shri A. Venkatesh D. Shrode</td>
</tr>
<tr>
<td>Building Materials and Technology Promotion Council, New Delhi</td>
<td>Shri K. K. Meghashyam (Alternate)</td>
</tr>
<tr>
<td>Cement Corporation of India Limited, New Delhi</td>
<td>Shri L. R. Bishnoi</td>
</tr>
<tr>
<td>Cement Manufacturers’ Association, Noida</td>
<td>Shri Saurabh Acharya (Alternate)</td>
</tr>
<tr>
<td>Central Board of Irrigation and Power, New Delhi</td>
<td>Dr Narendra D. Patel</td>
</tr>
<tr>
<td>Central Building Research Institute (CSIR), Roorkee</td>
<td>Shri J. K. Prasad</td>
</tr>
<tr>
<td>Central Public Works Department, New Delhi</td>
<td>Shri C. N. Jha (Alternate)</td>
</tr>
<tr>
<td>Central Road Research Institute (CSIR), New Delhi</td>
<td>Shri R. R. Deshpande</td>
</tr>
<tr>
<td>Central Soil and Materials Research Station, New Delhi</td>
<td>Shri M. K. Agarwal (Alternate)</td>
</tr>
<tr>
<td>Central Water Commission, New Delhi</td>
<td>Shri N. A. Viswanathan</td>
</tr>
<tr>
<td>Conmat Technologies Pvt Ltd, Kolkata</td>
<td>Dr S. K. Handoo (Alternate)</td>
</tr>
<tr>
<td>Construction Chemicals Manufacturers’ Association, Mumbai</td>
<td>Secretary (Civil) (Alternate)</td>
</tr>
<tr>
<td>Construction Industry Development Council, New Delhi</td>
<td>Dr. B. K. Rao</td>
</tr>
<tr>
<td>Delhi Development Authority, New Delhi</td>
<td>Dr S. K. Agarwal (Alternate)</td>
</tr>
<tr>
<td></td>
<td>Shri A. K. Garg</td>
</tr>
<tr>
<td></td>
<td>Shri Manu Amitabh (Alternate)</td>
</tr>
<tr>
<td></td>
<td>Dr Rakesh Kumar</td>
</tr>
<tr>
<td></td>
<td>Dr Renu Mathur (Alternate)</td>
</tr>
<tr>
<td></td>
<td>Shri Murari Ratnam</td>
</tr>
<tr>
<td></td>
<td>Shri N. Sivakumar (Alternate)</td>
</tr>
<tr>
<td></td>
<td>Director (CMDD)(N&W)</td>
</tr>
<tr>
<td></td>
<td>Deputy Director (CMDD) (NW&S) (Alternate)</td>
</tr>
<tr>
<td></td>
<td>Dr A. K. Chatterjee</td>
</tr>
<tr>
<td></td>
<td>Shri Samir Surlaker</td>
</tr>
<tr>
<td></td>
<td>Shri Upen Patel (Alternate)</td>
</tr>
<tr>
<td></td>
<td>Shri P. R. Swarup</td>
</tr>
<tr>
<td></td>
<td>Shri Ravi Jain (Alternate)</td>
</tr>
<tr>
<td></td>
<td>Chief Engineer (QAC)</td>
</tr>
<tr>
<td></td>
<td>Director (Material Management) (Alternate)</td>
</tr>
<tr>
<td>Organization</td>
<td>Representative(s)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Engineers India Limited, New Delhi</td>
<td>SHRI VINAY KUMAR
SHRI A. K. MISHRA (Alternate)</td>
</tr>
<tr>
<td>Fly Ash Unit, Department of Science and Technology, New Delhi</td>
<td>Dr. VIMAL KUMAR</td>
</tr>
<tr>
<td>Gammon India Limited, Mumbai</td>
<td>SHRI VENKATARAMANA N. HEGGADDE
SHRI MANISH MOKAL (Alternate)</td>
</tr>
<tr>
<td>Grasim Industries Limited, Mumbai</td>
<td>SHRI A. K. JAIN
DR. S. P. PANDEY (Alternate)</td>
</tr>
<tr>
<td>Hindustan Construction Company Ltd, Mumbai</td>
<td>Dr. CHETAN HAASAREE
SHRI MANGHAR CHEKALA (Alternate)</td>
</tr>
<tr>
<td>Housing and Urban Development Corporation Limited, New Delhi</td>
<td>SHRI DEEPAK BANSAL</td>
</tr>
<tr>
<td>Indian Association of Structural Engineers, New Delhi</td>
<td>PROF MAHESH TANDON
SHRI GANESH JUNEA (Alternate)</td>
</tr>
<tr>
<td>Indian Bureau of Mines, Nagpur</td>
<td>SHRI S. S. DAS
SHRI MEERUL HASAN (Alternate)</td>
</tr>
<tr>
<td>Indian Concrete Institute, Chennai</td>
<td>SHRI VIVEK NAIK
SECRETARY GENERAL (Alternate)</td>
</tr>
<tr>
<td>Indian Institute of Technology Kanpur, Kanpur</td>
<td>DR. SUDHIR MISRA
DR. SUDIB K. MISHRA (Alternate)</td>
</tr>
<tr>
<td>Indian Institute of Technology Madras, Chennai</td>
<td>PROF DEVDS MENGON
DR. MANU SANTHANAM (Alternate)</td>
</tr>
<tr>
<td>Indian Institute of Technology Roorkee, Roorkee</td>
<td>PROF V. K. GUPTA
DR. BHUPINDER SINGH (Alternate)</td>
</tr>
<tr>
<td>Indian Roads Congress, New Delhi</td>
<td>SECRETARY GENERAL
DIRECTOR (Alternate)</td>
</tr>
<tr>
<td>Institute for Solid Waste Research & Ecological Balance, Visakhapatnam</td>
<td>DR. N. BHANUMATHIDAS
SHRI N. KALIDAS (Alternate)</td>
</tr>
<tr>
<td>Jai Prakash Associates Ltd, New Delhi</td>
<td>SHRI M. K. GHOSHI</td>
</tr>
<tr>
<td>Lafarge India Pvt Ltd, Mumbai</td>
<td>MS. MADHUMITA BASU
SHRI SANJAY JAIN (Alternate)</td>
</tr>
<tr>
<td>Madras Cements Ltd, Chennai</td>
<td>SHRI BAJAJ K. MOORTHY
SHRI ANIL KUMAR PILLAI (Alternate)</td>
</tr>
<tr>
<td>Military Engineer Services, Engineer-in-Chief’s Branch, Army Headquarter,</td>
<td>MAI-GEN N. R. K. BABU
SHRI S. K. JAIN (Alternate)</td>
</tr>
<tr>
<td>Ministry of Road Transport & Highways, New Delhi</td>
<td>SHRI A. N. DHODAPKAR
SHRI S. K. PURI (Alternate)</td>
</tr>
<tr>
<td>National Council for Cement and Building Materials, Ballabgarh</td>
<td>SHRI V. V. AKORA
DR. M. M. ALI (Alternate)</td>
</tr>
<tr>
<td>National Test House, Kolkata</td>
<td>SHRI B. R. MEENA
SHRIYATHI S. A. KAUSHIL (Alternate)</td>
</tr>
<tr>
<td>Nuclear Power Corporation of India Ltd, Mumbai</td>
<td>SHRI U. S. P. VERMA
SHRI ARVIND SHRIVASTAVA (Alternate)</td>
</tr>
<tr>
<td>OCL India Limited, New Delhi</td>
<td>DR. S. C. ASHIWALLIA
SUPERINTENDING ENGINEER
EXECUTIVE ENGINEER (Alternate)</td>
</tr>
<tr>
<td>Public Works Department, Government of Tamil Nadu, Chennai</td>
<td>SHRI R. M. SHARMA
SHRI V. K. YADAV (Alternate)</td>
</tr>
<tr>
<td>Research, Design & Standards Organization (Ministry of Railways), Lucknow</td>
<td>SHRI D. B. N. RAO
DR. H. K. PANAI (Alternate)</td>
</tr>
<tr>
<td>Sanghi Industries Limited, Sanghi Nagar</td>
<td>DR. K. RAMANJANAYULU
SHRI P. SRINIVASAN (Alternate)</td>
</tr>
<tr>
<td>Structural Engineering Research Centre (CSIR), Chennai</td>
<td>DR. D. VENKATESHWARAN
SHRI S. GOPINATH (Alternate)</td>
</tr>
</tbody>
</table>
IS 8112 : 2013

Organization

The Indian Hume Pipe Company Limited, Mumbai
Dr. H. C. Visvesvaraya
Shri S. H. Jain (Alternate)

The Institution of Engineers (India), Kolkatta
Shri P. R. Bhat
Shri S. J. Shaik (Alternate)

The National Institute of Engineering, Mysore
Dr. N. Suresh
Shri H. N. Ramamurthi (Alternate)

Ultra Tech Cement Ltd, Mumbai
Dr. Subrato Chowdhury
Shri Biswajit Dhar (Alternate)

Voluntary Organization in Interest of Consumer Education, New Delhi
Shri M. A. U. Khan
Shri H. Wadhwa (Alternate)

In personal capacity (36, Old Sneh Nagar, Wardha Road, Nagpur)
Shri L. K. Jain

In personal capacity (EA-92, Maya Enclave, Hari Nagar, New Delhi)
Shri R. C. Wason

In personal capacity (E-1, 402, White House Apartments, R.T. Nagar, Bangalore)
Shri S. A. Reddi

BIS Directorate General
Shri A. K. Saini, Scientist ‘G’ and Head (Civ Engg)
[Representing Director General (Ex-officio)]

Member Secretaries
Shri Sanjay Pant
Scientist ‘E’ & Director (Civ Engg), BIS
Shri S. Arun Kumar
Scientist ‘C’ (Civ Engg), BIS

Cement, Pozzolana and Cement Additives Subcommittee, CED 2 : 1

In personal capacity (E-1, 402, White House Apartments, R.T. Nagar, Bangalore)
Shri S. A. Reddi (Convener)

ACC Ltd, Mumbai
Shri S. A. Khadilkar
Shri Sharad Kumar Shrivastava (Alternate)

Aimil Ltd, New Delhi
Dr. V. M. Sharma
Shri Aman Kuhllar (Alternate)

All India Mini Cement Manufacturers’ Association, Hyderabad
Shri S. R. B. Ramesh Chandra
Shri S. Srikanth Reddy (Alternate)

Ambuja Cements Ltd, Ahmedabad
Shri C. M. Dordi
Dr. A. N. Vissa Rao (Alternate)

Atomic Energy Regulatory Board, Mumbai
Shri L. R. Bishnoi
Shri Saurabh Acharaya (Alternate)

Building Materials and Technology Promotion Council, New Delhi
Shri J. K. Prasad
Shri C. N. Jha (Alternate)

Cement Corporation of India Ltd, New Delhi
Shri M. K. Agarwal
Shrimati Saraswathi Devi (Alternate)

Cement Manufacturers’ Association, Noida
Shri Subrato Chowdhury
Dr. K. C. Narang (Alternate)

Central Building Research Institute (CSIR), Roorkee
Dr. B. K. Rao
Dr. S. K. Agarwal (Alternate)

Central Electricity Authority, New Delhi
Shri Y. K. Sharma
Shri Mohan Kumar (Alternate)

Central Pollution Control Board, Delhi
Shri J. S. Kambytra
Shri P. K. Gupta (Alternate)

Central Public Works Department, New Delhi
Shri A. K. Gang
Shri Manu Amtesh (Alternate)

Central Road Research Institute (CSIR), New Delhi
Dr. A. K. Misra
Shri J. B. Sengupta (Alternate)

Central Soil and Materials Research Station, New Delhi
Shri Murari Ratnam
Shri N. Sivakumar (Alternate)
Organization

Central Water Commission, New Delhi

Dalmia Cement (Bharat) Limited, New Delhi

Fly Ash Unit, Ministry of Science and Technology, New Delhi

Gammon India Limited, Mumbai

Grasim Industries Limited, Mumbai

Gujarat Engineering Research Institute, Vadodara

Hindustan Construction Company Limited, Mumbai

Indian Concrete Institute, Chennai

Indorama Cement Limited, Mumbai

Institute for Solid Waste Research & Ecological Balance (INSWAREB), Visakhapatnam

Lafarge India Limited, Mumbai

Madras Cements Ltd, Chennai

Maharashtra Engineering Research Institute, Nasik

Military Engineer Services, Engineer-in-Chief Branch, Army Headquarter, New Delhi

Ministry of Commerce & Industry, New Delhi

Ministry of Shipping, Road Transport & Highways, New Delhi

National Council of Cement and Building Materials, Ballabgarh

National Hydroelectric Power Corporation Limited, Faridabad

National Test House, Kolkata

NTPC Ltd, New Delhi

OCL India Limited, New Delhi

Orkla India Pvt Ltd, Navi Mumbai

Public Works Department, Government of Tamil Nadu, Chennai

Ready Mixed Concrete Manufacturers’ Association, Mumbai

Research, Design and Standards Organization (Ministry of Railways), Lucknow

Tamil Nadu Minerals Limited, Chennai

Tata Steel Ltd, Jamshedpur

Ultra Tech Cement Ltd, Mumbai

In personal capacity (II/69, President’s Estate, New Delhi)

Representative(s)

DIRECTOR, CMDD (N&W)

DEPUTY DIRECTOR, CMDD (NW&S) (Alternate)

Dr. K. C. Narak

Shri C. S. Sharma (Alternate)

Dr. Vimal Kumar

Shri Avinash Y. Mahendrakar

Shri Manish Mokal (Alternate)

Shri A. K. Jain

Dr. S. P. Pande (Alternate)

Shri B. M. Rao

Shri K. L. Dave (Alternate)

Shri S. K. Dharmanadhikari

Shri K. R. Viswanath (Alternate)

Dr. Anant M. Pande

SECRETARY GENERAL (Alternate)

Shri Sanjeev Paraskampuria

BEGO R. V. Seetaramaiah (Alternate)

Dr. N. Bhunumathidas

Shri N. Kalidas (Alternate)

Shri M. K. Chaudhary

Shri Anil Parashar (Alternate)

Shri Balaj K. Moodthy

Shri Anil Kumar Pillai (Alternate)

Scientific Research Officer

Assistant Research Officer (Alternate)

Brig Rajesh Tyagi

Col Mukesh Chopra (Alternate)

Shri P. K. Jain

Shri Shaish Kumar (Alternate)

Shri A. K. Sharma

Shri Harichand Abora (Alternate)

Dr. M. M. Ali

Dr. S. Harish (Alternate)

Shri A. K. Jain

Shri D. V. S. Prasad

Dr. Mortrayee Deni (Alternate)

Shri A. Viyaraman

Shri Masoom Ali (Alternate)

Dr. S. C. Ahluwalia

Shri Kshemendra Nath P.

Shri Prashant Jha (Alternate)

Joint Chief Engineer (Irrigation)

Executive Engineer (Alternate)

Shri Viyan Kumar R. Kulkaani

Deputy Director (B&F)

Asstt Design Engineer (B&F) (Alternate)

Shri K. Sumanth Babu

Shri Indranil Chakrabarti

Shri Subrato Chowdhury

Shri Biswajit Diar (Alternate)

Shri K. H. Babu
Panel for Revision of Cement Standards, CED 2 : 1/P1

In personal capacity (*II/69*, President’s Estate, New Delhi)
AIMIL Ltd, New Delhi
S HRI K. H. BABU (Convener)
Dr. V. M. SHARMA
Dr. V. M. SHARMA
Dr. D. GHOSH
Dr. D. GHOSH
Dr. S. K. AGARWAL
Dr. S. K. AGARWAL
Dr. A. K. GARG
Dr. A. K. GARG
Dr. P. K. JAIN
Dr. P. K. JAIN
Dr. S. HARSH
Dr. S. HARSH
Shri Vidyakumar R. KULKARNI
Shri Vidyakumar R. KULKARNI
Shri S. D. GOVILKAR (Alternate)
Shri S. D. GOVILKAR (Alternate)

Cement Manufacturers’ Association, Noida
Central Building Research Institute (CSIR), Roorkee
Central Public Works Department, New Delhi
Military Engineer Services, Engineer-in-Chief’s Branch, Army
Headquarter, New Delhi
National Council for Cement and Building Materials, Ballabgarh
Ready Mixed Concrete Manufacturers’ Association, Mumbai
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards : Monthly Additions’.

This Indian Standard has been developed from Doc No.: CED 2 (7673).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephone: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.org.in

Regional Offices: Telephone

Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
 2323 7617
 2323 3841

Eastern: 1/14 C.I.T. Scheme VII M, V. I. P. Road, Kankurgachi, KOLKATA 700054
 2337 8499, 2337 8561
 2337 8626, 2337 9120

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160022
 60 3843
 60 9285

Southern: C.I.T. Campus, IV Cross Road, CHENNAI 600113
 2254 1216, 2254 1442
 2254 2519, 2254 2315

Western: Manakalaya, E9 MIDC, Marol, Andheri (East), MUMBAI 400093
 2832 9295, 2832 7858
 2832 7891, 2832 7892

Branches: AHMEDABAD, BANGALORE, BHOPAL, BHIKHANISHWAR, COIMBATORE, DEHRADUN, FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR, LUCKNOW, NAGPUR, PARWANOO, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM, VISAKHAPATNAM.

Published by BIS, New Delhi